
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/225366566

Downscaling	GCMs	using	the	Smooth	Support
Vector	Machine	method	to	predict	daily
precipitation	in	the	Hanjiang	Basin

ARTICLE		in		ADVANCES	IN	ATMOSPHERIC	SCIENCES	·	JANUARY	2010

Impact	Factor:	1.48	·	DOI:	10.1007/s00376-009-8071-1

CITATIONS

11

READS

71

5	AUTHORS,	INCLUDING:

Hua	Chen

Wuhan	University

29	PUBLICATIONS			297	CITATIONS			

SEE	PROFILE

Jing	Guo

Hydrochina	Corporation

10	PUBLICATIONS			58	CITATIONS			

SEE	PROFILE

Shenglian	Guo

Wuhan	University

119	PUBLICATIONS			1,434	CITATIONS			

SEE	PROFILE

Chong-Yu	Xu

University	of	Oslo

271	PUBLICATIONS			6,196	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Shenglian	Guo

Retrieved	on:	09	December	2015

http://www.researchgate.net/publication/225366566_Downscaling_GCMs_using_the_Smooth_Support_Vector_Machine_method_to_predict_daily_precipitation_in_the_Hanjiang_Basin?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_2
http://www.researchgate.net/publication/225366566_Downscaling_GCMs_using_the_Smooth_Support_Vector_Machine_method_to_predict_daily_precipitation_in_the_Hanjiang_Basin?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_1
http://www.researchgate.net/profile/Hua_Chen20?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_4
http://www.researchgate.net/profile/Hua_Chen20?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_5
http://www.researchgate.net/institution/Wuhan_University?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_6
http://www.researchgate.net/profile/Hua_Chen20?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_7
http://www.researchgate.net/profile/Jing_Guo18?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_4
http://www.researchgate.net/profile/Jing_Guo18?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_5
http://www.researchgate.net/institution/Hydrochina_Corporation?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_6
http://www.researchgate.net/profile/Jing_Guo18?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_7
http://www.researchgate.net/profile/Shenglian_Guo?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_4
http://www.researchgate.net/profile/Shenglian_Guo?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_5
http://www.researchgate.net/institution/Wuhan_University?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_6
http://www.researchgate.net/profile/Shenglian_Guo?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_7
http://www.researchgate.net/profile/Chong_Yu_Xu?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_4
http://www.researchgate.net/profile/Chong_Yu_Xu?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_5
http://www.researchgate.net/institution/University_of_Oslo?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_6
http://www.researchgate.net/profile/Chong_Yu_Xu?enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx&el=1_x_7


ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 27, NO. 2, 2010, 274–284

Downscaling GCMs Using the Smooth Support

Vector Machine Method to Predict Daily

Precipitation in the Hanjiang Basin

CHEN Hua1 (��), GUO Jing1 (��), XIONG Wei3 (��),
GUO Shenglian1 (���), and Chong-Yu XU∗2

1State Key Laboratory of Water Resources and Hydropower Engineering Science,

Wuhan University, Wuhan 430072

2Department of Geosciences, University of Oslo, PO Box 1047 Blindern, NO-0316 Oslo, Norway

3Radar and Avionics Institute of Aviation Industry Corporation of China, Wuxi 214063

(Received 5 May 2008; revised 18 May 2009)

ABSTRACT

General circulation models (GCMs) are often used in assessing the impact of climate change at global
and continental scales. However, the climatic factors simulated by GCMs are inconsistent at comparatively
smaller scales, such as individual river basins. In this study, a statistical downscaling approach based on
the Smooth Support Vector Machine (SSVM) method was constructed to predict daily precipitation of the
changed climate in the Hanjiang Basin. NCEP/NCAR reanalysis data were used to establish the statistical
relationship between the larger scale climate predictors and observed precipitation. The relationship obtained
was used to project future precipitation from two GCMs (CGCM2 and HadCM3) for the A2 emission
scenario. The results obtained using SSVM were compared with those from an artificial neural network
(ANN). The comparisons showed that SSVM is suitable for conducting climate impact studies as a statistical
downscaling tool in this region. The temporal trends projected by SSVM based on the A2 emission scenario
for CGCM2 and HadCM3 were for rainfall to decrease during the period 2011–2040 in the upper basin and
to increase after 2071 in the whole of Hanjiang Basin.

Key words: SSVM, GCM, statistical downscaling, precipitation, Hanjiang Basin
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1. Introduction

The issue of global climate change has been the
subject of much discussion in the literature because of
the potentially serious impacts upon the Earth’s envi-
ronment. In 2007 the United Nations Climate Change
Conference stated that it would be vital for the world’s
development to resolve global climate change problems
and the climate change issue must be placed on the
top of member states’ political agendas in order to
achieve the goals of sustainable development. In Jan-
uary 2008, 20 out of 30 provinces of China suffered
from heavy snow which caused enormous economic

loss—approximately 13 billion US dollars. As climate,
water resources, biophysical and socioeconomic sys-
tems are interconnected in complex ways, it follows
that a change in any one of these can induce a change
in any other. Water-related issues are critical in deter-
mining key regional and sectoral vulnerabilities, and
therefore the relationship between climate change and
water resources is of primary concern to human society
and also has implications for all living species.

It is well known that GCMs, which are numeri-
cal coupled models and describe the atmospheric pro-
cesses through mathematical equations, have been
one of the most important tools for studying climate
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change. GCMs represent various earth systems in-
cluding the atmosphere, oceans, land surface and sea
ice and offer considerable potential for studying cli-
mate change. At large scales, GCMs which have
been steadily evolving over several decades are able
to simulate reliably the most important features of
global climate. However, these same models perform
poorly at smaller spatial and temporal scales relevant
to regional impact analyses (Grotch and MacCracken,
1991; Wilby and Wigley, 1997; Wilby et al., 2007).
The reason is that the spatial resolution of GCM grids
is too coarse to resolve many important sub-grid scale
processes and GCM outputs are therefore often unreli-
able at individual grid and sub-grid box scales (Wilby
et al., 1999; Xu, 1999).

To deal with this issue several downscaling method-
ologies, such as dynamic downscaling and statistical
downscaling have been developed. Dynamic down-
scaling refers to the use of regional climate mod-
els (RCMs), or limited-area models (LAMs) which
use large-scale and lateral boundary conditions from
GCMs to produce higher resolution outputs (Fowler
et al., 2007). Statistical downscaling methods seek to
draw empirical relationships that transform large-scale
features of GCM (predictors) to regional-scale vari-
ables (predictands), such as precipitation and temper-
ature (Tripathi et al., 2006). Sophisticated statistical
downscaling methods are generally classified into three
groups: weather pattern schemes (Conway et al., 1996;
Fowler et al., 2000; Bárdossy et al., 2005), weather
generators (WGs) (Mason, 2004; Dubrovsky et al.,
2004; Kilsby et al., 2007) and regression models (Wilby
et al., 1999; Zorita and Storch, 1999; Tripathi et al.,
2006; Ghosh and Mujumdar, 2007). Among the statis-
tical downscaling methods, regression models, which
are used to directly quantify a relationship between
the predictand and a set of predictor variables, are
possibly the most popular; examples include multiple
regression models (MRMs) (Wilby et al., 1999), artifi-
cial neural networks (ANNs) (Zorita and Storch, 1999;
Olsson et al., 2004; Tatli et al., 2004; Coulibaly et
al., 2005), canonical correlation analysis (CCA) (Karl
et al., 1990; von Storch et al., 1993; Busuioc et al.,
2001) and singular value decomposition (SVD) (Huth,
1999). MRMs and ANNs have been applied widely
owing to their powerful ability in regression analy-
sis and forecasting. However, high dimension prob-
lems for MRMs, and, for ANNs, getting trapped in
local minima, subjectively choosing model architec-
ture, and over-learning have hampered their more fre-
quent and wider application. Vapnik (1995, 1998) pro-
posed the Support Vector Machine (SVM)—a novel
machine learning algorithm—and provided an elegant
solution to the above problems. Recently, SVM has

been widely applied in the fields of classification and
regression analysis (Tripathi et al., 2006; Ghosh and
Mujumdar, 2007; Yu and Liong, 2007). Tripathi et al.
(2006) proposed a SVM approach for statistical down-
scaling of monthly precipitation and showed that the
method provides a promising alternative to ANNs. Yu
and Liong (2007) applied SVM to predict streamflow,
comparing the results with those of a local model in a
chaotic time series analysis. Significantly better pre-
diction accuracy and faster processing speed were ob-
tained from the SVM scheme. Although SVM has
extensive applications in various fields, it has some
drawbacks in dealing with large data samples, such
as slow training speed, low implementation efficiency
and inadaptability to noise and outliers. To overcome
these limitations for large data samples there have
been many improved algorithms developed (Joachims,
1999; Mangasarian and Musicant, 1999; Platt, 1998;
Lee et al., 2005). Lee et al. (2005) proposed a new
smoothing strategy for solving the regression of large-
scale training data called the Smooth Support Vec-
tor Machine (SSVM), which has been verified as being
very efficient in his study.

This study investigates the potential use of SSVM
in downscaling GCM simulations and assesses the im-
pact of climate change on precipitation in the Hanjiang
Basin, a tributary of the Yangtze River in China. More
specifically, the following objectives have been set for
this paper: (1) to establish the statistical relationship
between large-scale circulation (using NCEP/NCAR
reanalysis data) and precipitation in the Hanjiang
Basin by using two statistical downscaling methods;
and (2) to apply the established statistical relationship
to predict future precipitation in the Hanjiang Basin
by using outputs from CGCM2 and HadCM3 run for
the A2 emission scenarios as inputs.

2. Study region and data

2.1 Study region

The Hanjiang River is the source of water for the
middle route of the well known South-to-North Water
Diversion Project (SNWDP) in China, as shown in
Fig.1. The basin has a subtropical monsoon climate
and the whole Hanjiang Basin is divided into three
regions: the Danjiangkou reservoir sub-basin (upper
sub-basin), the middle sub-basin, and the lower sub-
basin (Chen et al., 2007). The basin’s annual precip-
itation is around 700–1000 mm, which gradually in-
creases from the upper to the lower basin and decreases
from south to north in the upper basin. As some of
its water is transferred via the SNWDP, this has an
impact on socioeconomic development and on the en-
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Table 1. Latitude and longitude of the meteorological stations in the Hanjiang Basin.

No. Station name Latitude (◦N) Longitude (◦E) Elevation (m)

1 Hanzhong 33.04 107.02 508.4
2 Foping 33.32 107.59 1087.7
3 Shangzhou 33.52 109.58 742.2
4 Xixia 33.18 111.30 250.3
5 Wanyuan 32.06 108.03 129.2
6 Shiquan 33.03 108.16 484.9
7 Ankang 32.43 109.02 290.8
8 Zhenan 33.43 109.15 693.7
9 Fangxian 32.03 110.44 434.4
10 Laohekou 32.23 111.40 90.0
11 Zaoyang 32.09 112.45 125.5
12 Nanyang 33.03 112.58 129.2
13 Tianmen 30.40 113.10 34.1
14 Wuhan 30.37 114.08 23.3
15 Jiayu 29.98 113.92 22.2

vironment in the middle and lower sub-basins. The
Hanjiang Basin and the middle route of the SNWDP
have been the subject of studies looking into avail-
able water resources in the Hanjiang River under the
impact of climate change (Guo et al., 2002; Chen et
al., 2007). Guo et al. (2002) studied the impact of
climate change on water resources in the Hanjiang
Basin based on a semi-distributed monthly water bal-
ance model and the results showed that precipitation
change is the main factor affecting changes in runoff.
Chen et al. (2007) investigated spatial and temporal
trends of observed annual and seasonal precipitation
and temperature from 1951 to 2003 in the Hanjiang
Basin by using the Mann-Kendall test and assessed
the impact of climate change on runoff in the Dan-
jiangkou reservoir basin. It is important for the man-
agement of the Hanjiang River and the middle route
of the SNWDP to predict future precipitation, and
this can be done through the application of statistical
downscaling methods, as discussed above.

2.2 Predictands and predictors

The predictand in this study is daily precipitation
from 1961 to 2000. Observed data for this were pro-
vided by the National Climatic Centre of China, cov-
ering 15 National Meteorological Observatory (NMO)
stations in the Hanjiang Basin. The location of these
stations are shown in Fig. 1 and their altitudes and
coordinates are listed in Table 1.

One of the most important steps in a downscaling
exercise is to select appropriate predictors, or charac-
teristics from GCMs. Wilby et al. (1999) proposed
that there are three main factors constraining the
choice of predictors: (1) whether the predictors were
reliably simulated by the GCM in the first place; (2)
how readily available the GCM output data are; and

(3) the correlation strength with the surface variables
of interest. Wilby et al. (1999) predicted future pre-
cipitation by mean sea level pressure (MSLP), geopo-
tential height (GH) and specific humidity (SH) in the
San Juan River Basin. Having considered both the
similarities and differences of the Hanjing Basin to the
San Juan River Basin used in Wilby et al.’s (1999)
study, the predictors for precipitation selected for the
present study were: MSLP, surface air temperature
(2 m), 500 hPa GH and SH, and 850 hPa GH and
SH. NCEP/NCAR daily reanalysis data (Kalnay et
al., 1996) were used for training the downscaling model
and the daily outputs of CGCM2 and HadCM3 run for
the A2 emission scenario were used for projecting fu-
ture precipitation with the trained model. Owing to
projections of climate change depending heavily upon
future human activity, climate models such as CGCM2
and HadCM3 are run against scenarios which make
different assumptions for changes in future greenhouse

 

Fig. 1. Location of the Hanjiang Basin and the middle
route of the SNWDP in China.
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gas levels, land use, and other driving forces. Com-
pared to other plausible scenarios, in the A2 emis-
sion scenario global population is expected to increase
at a high rate, which assumes regional resiliency and
adaptation, with economic development being moder-
ate and focused within regions. For the two GCMs
in this study, CGCM2, which is based on the earlier
CGCM1 (Flato and Boer, 2001) extends from January
1948 to December 2100, and HadCM3, which is a cou-
pled atmosphere–ocean GCM developed at the Hadley
Centre (Gordon et al., 2000) extends from January
1961 to December 2099. For the statistical downscal-
ing approaches, the geographical extent should be cho-
sen to include all areas with noticeable influence on the
circulation patterns in the Hanjiang Basin. Figure 1
shows the NCEP/NCAR grid points (2.5◦×2.5◦) su-
perimposed on a map of the Hanjiang Basin. CGCM2
grids (3.75◦× 3.75◦) and HadCM3 grids (2.5◦×3.75◦)
are interpolated spatially into the NCEP grids by using
the inverse distance weighting method. The following
section will present the statistical downscaling meth-
ods (SSVM and the ANN) with training and testing
steps.

3. Methods and model development

3.1 SSVM

SVM is a new machine study method in the field
of statistical learning theory and stresses to study
statistical learning rules under small samples (Vap-
nik, 1998). Via structural risk minimization principle
to enhance generalized ability, SVM preferably solves
many practical problems, such as small sample, non-
linear, high dimension number and global minimum
points. The architecture of SVM is shown in Fig. 2.
However, SVM cannot deal efficiently with large data
samples, as in the case of this study. As an improved
algorithm based on SVM, SSVM, developed by Lee et
al. (2005), is better able to handle the cases of classifi-
cation and nonlinear regression with a larger dataset,

and has received considerable attention. In SSVM,
smoothing techniques are applied to solve important
mathematical programming problems and the ε− in-
sensitive loss function is replaced by the squares of
2-norm ε− insensitive loss function. In addition, the

term
1
2
b2 is added in the objective function to induce

strong convexity and to guarantee that the problem
has a unique global optimal solution. The standard
framework for SSVM for nonlinear regression consists
of the following steps.

A training dataset was given:

S = {(x1, y1), · · · , (xi, yi), · · · , (xm, ym)} ⊆
Rn × R, i = 1, · · · , m

where xi ∈ Rn represents the input data and yi ∈ R
is called the observation. The training dataset S is
expressed in Eq. (1) which consists of m points in n-
dimensional real space Rn represented by the matrix
A ∈ Rm×n and m observations of real value associated
with each point. Ai is the ith row of a row vector A in
Rn. A column vector of ones of arbitrary dimension
will be denoted by L.

S = {(Ai, yi) |Ai ∈ Rn, yi ∈ R, i = 1, 2, · · · , m} (1)

The goal of the nonlinear support vector regression
is to estimate a model of the form:

y ≈ Aw + Lb ≈ AATu + Lb (2)

where w ∈ Rnand b ∈ R are parameters of SVM and
w can be represented by ATu for some u ∈ Rm. The
kernel technique is used to simply replace the AAT

in Eq. (2) by a nonlinear kernel matrix K(A, AT),
where K(A, AT)i,j = K(Ai, A

T
j ). The following un-

constrained optimization problem is formulated by:

min
(u,b)∈Rm+1

1
2
(uTu+b2)+

C

2

m∑

i=1

∣∣K(Ai, A
T)u + b − yi

∣∣2
ε

(3)
where K(Ai, A

T) is a kernel map from R1×n ×Rn×m

to R1×m. There are several possible functions for the
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Fig. 2. Architecture of the Support Vector Machine. The coefficients
w and b are the adjustable model parameters.
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choice of kernel function, including linear, polynomial,
sigmoid, splines and Radial Basis Function (RBF).
RBF kernel can map the training set into a possibly
infinite-dimensional space and is computationally sim-
ple. Moreover, the RBF can effectively handle the sit-
uation when the relationship between predictors and
predictand is nonlinear. The RBF is given by:

K(Ai, A
T
j ) = exp

(
−μ ‖Ai − Aj‖2

2

)
,

i, j = 1, 2, · · · , m (4)

where μ is the width of RBF, which can be adjusted
to control the expressivity of RBF.

The squares of 2-norm ε− insensitive loss function
in the above formulation can be accurately approxi-
mated by a smooth function which is infinitively dif-
ferentiable and defined as below:

p2
ε

[
K(Ai, A

T)u + b − yi, α
]

=
{
p[K(Ai, A

T)u + b − yi − ε, α]
}2

+
{
p[−[K(Ai, A

T)u + b − yi] − ε, α]
}2

(5)

where

p(x, α) = x +
1
α

log(1 + e−αx), α > 0

which is a smooth p−function. The following equa-
tions can be obtained:

min
(u,b)∈Rm+1

Φε,α(u, b) =
1
2
(uTu + b2) +

C

2

m∑

i=1

p2
ε ×

[
K(Ai, A

T)u + b − yi, α
]

=

= min
(u,b)∈Rm+1

1
2
(uTu+b2)+

C

2
LT

p2
ε[K(A, AT)u+Lb−y, α] (6)

where p2
ε[K(A, AT)u + Lb − y, α] is defined by:

p2
ε

[
K(A, AT)u + Lb − y, α

]
i

= p2
ε

[
K(Ai, A

T)u + b − yi, α
]

(7)

This problem retains the strong convexity and
differentiability properties for any arbitrary kernel.
Newton-Armijo Algorithm (Lee et al., 2005) is adopted
directly to solve Eq. (6), which is the unconstrained
minimal problem for u and b.

3.2 ANN method

Many ANN structures have been proposed and ex-
plored for tasks such as recognition, learning, forecast-
ing and controlling. Among these different structures,
the multilayer feed forward networks have the best
performance in the context of input-output function

approximation (Haykin, 1994). As a matter of fact,
almost all ANNs explored in rainfall-runoff modelling
are multilayer feed forward networks (Campolo et al.,
1999). Among the algorithms used to perform super-
vised training, the backpropagation method (Rumel-
hart et al., 1986) has emerged as the most widely used
and successful algorithm for the design of the mul-
tilayer feed forward neural networks (Haykin, 1994).
The backpropagation method has already been used
in hydrology (French et al., 1992; Gautam et al., 2000;
Wilby et al., 2003; Pang et al., 2007). Pang et al.
(2007) applied an ANN to develop a nonlinear per-
turbation model (NLPM-ANN) for improving rainfall–
runoff forecasting efficiency and accuracy. A detailed
description of the algorithm, which has been imple-
mented by Pang et al. (2007), is used in this approach.

3.3 Method evaluation

To evaluate the performance of SSVM and ANN
in downscaling GCM simulations there are subjective
decisions that must be made to get a good simula-
tion. The choice of objective functions is governed
by the purpose of study (Obled et al., 2002; Wetter-
hall et al., 2005). If, for example, the purpose is to
evaluate extreme events, evaluation parameters that
capture those characteristics are selected. The pre-
cipitation to be evaluated is also time-dependent, so
the objective function must be sensitive to temporal
properties. The main purpose of the present study is
to predict daily precipitation scenarios that are to be
used as an input to hydrological models to simulate fu-
ture water resources scenarios for the Hanjiang Basin.
For such a hydrological application, the differences in
the mean and standard deviation between observed
and simulated daily precipitation are considered to be
most important and are therefore used as criteria in
evaluating the downscaling model.

3.4 Model development

The Hanjiang Basin has distinct seasonal variation
in atmospheric circulation and precipitation as a result
of the subtropical monsoon circulation. The analysis
is divided into two seasons: one wet season stretch-
ing from May to October and accounting for 70%–
80% of total annual precipitation; and one dry season
from November to April. In this study the downscal-
ing models will be calibrated in wet and dry seasons
respectively. In order to evaluate the performance of
each method, we split the entire dataset into two parts:
the training set which is taken as 1961–1990, and the
testing set as the remaining 10 years (i.e. 1991–2000).
The training data is used to establish the regression
function; the testing set, which is not involved in the
training procedure, is used to evaluate the prediction

https://www.researchgate.net/publication/3297401_epsi-SSVR_a_smooth_support_vector_machine_for_epsi-insensitive_regression?el=1_x_8&enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx
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 Fig. 3. Five-day running-average daily precipitation of observed (Obs)
and simulated (by SSVM and ANN) for the upper Hanjiang Basin dur-
ing the wet season in 1998.

ability of the resulting regression function.
Prior to downscaling, NCEP/NCAR reanalysis

data and GCM data are standardized to reduce sys-
tematic biases in the mean and variances of GCM out-
puts. There are six predictor variables at 24 NCEP
grid points with a dimensionality of 144 for statistical
downscaling models, and so the predictors’ dimension-
ality may have been too high for a personal computer
to handle. Therefore, PCA, which has been widely
used to reduce dimension and compress data while
keeping most of the information content of the original
dataset, is performed to transform the set of correlated
144-dimensional predictors matrix into another set of
N -dimensional uncorrelated vectors—called principal
components (PCs)—by linear combination, such that
most of the information content of the original data
set is stored in the first few dimensions of the new set.
In this study, it can be observed from Table 2 that
the first 8 PCs represent 90% of the information vari-
ance of the original predictor matrix; therefore, they
are used as an input for the downscaling models to
establish relationships with daily precipitation.

In this study, SSVM has two parameters to be de-
termined: the width of RBF, μ and the penalty factor,
C. A tuning procedure, which can automatically

Table 2. Percentage variances and their cumulative values
for the first eight PCs by using PCA in processing NCEP
predictors’ dataset.

PCs No. Percent variance Cumulative percent

1 54% 54%
2 18% 71%
3 7% 79%
4 4% 83%
5 2% 85%
6 2% 88%
7 1% 89%
8 1% 90%

optimize parameters, is applied to select them (Lee et
al., 2005). The ANN model is trained by using the
back-propagation algorithm (Pang et al., 2007). The
generalization performance of the SSVM and ANN
downscaling models is measured on the testing sub-
set, which is different from the training subset.

4. Results

To assess the accuracy of the downscaling meth-
ods in producing rainfall inputs for hydrological mod-
els, a comparison of the mean and standard deviation
between observed and simulated daily precipitation is
shown in Table 3. It can be seen that there is a small
difference between the simulated and observed mean
daily precipitation in all three regions. It is also evi-
dent that SSVM performs very well in simulating the
mean values; however, ANN has slightly better results
for standard deviation than SSVM. In addition, the
standard deviation of the downscaled series is consis-
tently smaller than that of the observed series for both
models. The underestimation of the observed variance
of precipitation has also been found in previous stud-
ies (e.g. Srikanthan McMahon, 2001), and this de-
fect of stochastic precipitation models will need to be
remedied (Wilks, 1989; Gregory et al., 1993). The rea-
son may be that regression-based statistical downscal-
ing models often cannot explain entire variance of the
downscaled variable (Wilby et al., 2004) and cannot
mimic extreme precipitation observed in the record.
Exploration of a wider range of predictor variables and
a much longer validation phase could possibly provide
more insight into this problem (Tripathi et al., 2006).

To check the precipitation dynamics simulated by
the two models, a comparison between simulated and
observed values for two techniques after smoothing
with a five-day-moving-average filter for the upper
Hanjiang Basin is shown in Fig. 3. This shows that
simulation by SSVM is more consistent with observed

https://www.researchgate.net/publication/226106381_Application_of_Markov_models_to_area-average_daily_precipitation_series_and_interannual_variability_in_seasonal_totals?el=1_x_8&enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx
https://www.researchgate.net/publication/200472164_Guidelines_For_Use_of_Climate_Scenarios_Developed_From_Statistical_Downscaling_Methods?el=1_x_8&enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx
https://www.researchgate.net/publication/248807528_Conditioning_stochastic_daily_precipitation_models_on_total_monthly_precipitation?el=1_x_8&enrichId=rgreq-7c43785d-8a03-44dc-97f1-1ad92feba032&enrichSource=Y292ZXJQYWdlOzIyNTM2NjU2NjtBUzo5OTM1MTY0OTA2MjkzMUAxNDAwNjk4Njg3ODUx
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Table 3. Simulation results for the SSVM and ANN downscaling methods in the Hanjiang Basin (mm).

Training Testing

SSVM ANN SSVM ANN

Obs. Values Bias Values Bias Obs. Values Bias Values Bias

Upper wet Mean 4.01 4.02 0.01 3.70 −0.31 3.59 3.39 −0.20 3.32 −0.27
Stdev 7.41 5.35 −2.06 5.52 −1.89 7.08 5.11 −1.97 5.59 −1.49

dry Mean 0.86 0.86 0.00 0.81 −0.05 0.73 0.76 0.03 0.61 −0.12
Stdev 2.62 1.99 −0.63 2.02 −0.60 2.21 1.87 �0.34 1.90 −0.31

Middle wet Mean 3.48 3.48 0.00 2.89 −0.59 3.30 3.56 0.26 2.82 −0.48
Stdev 8.25 5.06 −3.19 5.39 −2.86 7.81 5.38 −2.43 5.28 −2.53

dry Mean 1.18 1.19 0.01 1.10 −0.08 1.04 1.07 0.03 1.15 0.11
Stdev 3.77 3.07 −0.70 2.69 −1.08 3.21 3.38 0.17 3.28 0.07

Lower wet Mean 4.28 4.29 0.01 3.93 −0.35 4.57 4.38 −0.19 3.88 −0.69
Stdev 10.37 6.70 −3.67 6.68 −3.69 10.94 7.04 −3.90 7.12 −3.82

dry Mean 2.12 2.90 0.78 2.01 −0.11 2.17 2.41 0.24 2.07 −0.10
Stdev 5.30 4.40 −0.90 3.48 −1.82 5.81 4.08 −1.73 4.11 −1.70

data than by ANN. The monthly values, averaged over
all stations in different parts of the Hanjiang Basin, are
reasonably well captured by the two methods (Fig. 4),
especially in the upper basin. The long-term average
intra-annual variation is well simulated (Fig. 5a) and
the simulation by SSVM is closer to the observed pre-
cipitation than that of ANN, except for August and
September when it is overestimated.

Through the above analysis, the SSVM method has
been confirmed as a feasible potential alternative to
the ANN method for climate impact studies in hydrol-
ogy. Therefore, a SSVM downscaling model is used to
downscale CGCM2 and HadCM3 simulations for the
A2 emission scenario to obtain simulations of future
regional precipitation. Annual precipitation totals are
calculated from the simulated future scenarios, which
are divided into three periods: 2011–2040, 2041–2070,
and 2071–2099. This is done to determine the trend in
projected values of precipitation. The results are pre-
sented in Table 4, from which it can be observed that
there is a decreasing trend of precipitation in both wet
and dry seasons during the 2011–2040 period; how-
ever, there is a discordant change in wet season during
the 2041–2070 period in the upper Hanjiang Basin for
both GCMs. In the middle basin the two GCMs show
a decrease in precipitation in the wet season during
the 2011–2040 period, and an increase in wet and dry
seasons during the 2041–2070 period. Opposite results
are found for the two GCMs in the dry season during
the 2011–2040 period. The precipitation in the lower
basin has an upward trends in both GCMs in the wet
season during the 2041–2070 period; however, it has
different patterns of change in the 2011–2040 period
in the wet and dry seasons for the two GCMs. After
2070 both GCMs show precipitation will increase in
the wet and dry seasons in all parts of the Hanjiang

Basin.

5. Discussion

This study has shown that, compared with the
ANN statistical downscaling method, the proposed
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in different parts of the Hanjiang Basin for the period
1991–2000.
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Fig. 5. (a) Mean monthly observed (Obs) and downscaled precipitation (by
SSVM and ANN) and (b) annual total precipitation during 1991–2000 aver-
aged over all stations in the upper, middle and lower parts of the Hanjiang
Basin.

SSVM method is suitable for downscaling GCM sim-
ulations to study the impact of climate change on hy-
drology in the Hanjiang Basin.

Precipitation is an inherently stochastic, strongly
intermittent, and nonlinear process (Deidda, 1999),
and has great impact on local climate and water bal-
ance (floods and droughts); the statistics of mean and
variance are more often expected to be downscaled
with a sufficient accuracy when averaged over longer
time periods. The presented downscaling results are
typical examples that provided useful regional scale
precipitation scenarios for hydrological modeling. Ta-
ble 3 demonstrates that SSVM performs well in cap-
turing the daily mean values and less well in captur-
ing the variability as measured by standard deviation,
which is a common problem needing to be addressed.

It is necessary for statistical downscaling techniques to
propose an integral and strict evaluation method with
adjustable weights among various objective measures.

There have been some studies to detect statisti-
cally significant trends in precipitation in the Hanjiang
Basin. Chen et al. (2007) showed that when entering
the 1990s there was a very dry period in the Hanjiang
Basin, and they argued that if this situation does not
alter in the 21st century it would have serious impacts
on agriculture, industry and drinking water supply in
the middle China region; in particular, on the via-
bility of the middle route of the SNWDP. Decreas-
ing trends of precipitation in the wet and dry seasons
during the 2011–2040 period are found over the up-
per basin, which may cause a critical situation for the
Hanjiang Basin in meeting future irrigation demands,

Table 4. Changes in mean precipitation in the different periods of the 21st century downscaled by SSVM from the
observed precipitation in baseline periods (1961–1990) (%).

Upper Middle Lower

Period CGCM2 HadCM3 CGCM2 HadCM3 CGCM2 HadCM3

Wet 2011–2040 −14.16 −13.83 −3.13 −7.98 3.92 −0.82
2041–2070 −4.42 0.64 10.99 6.01 16.17 4.50
2071–2100 21.54 23.95 27.77 26.41 25.87 8.07

Dry 2011–2040 −1.88 −8.99 −10.58 14.87 −10.19 12.90
2041–2070 3.44 9.80 0.90 33.40 −1.31 25.51
2071–2100 18.28 29.02 25.76 53.17 14.08 37.52
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hydropower generation, and especially water supply
for the SNWDP. Increasing trends are found over the
whole basin after 2070. For the period 2041–2070 dif-
ferent patterns of change in regional precipitation are
found for the two GCMs. It is worth mentioning that
the future projections of predictands provided by a
downscaling model for a given climate change scenario
depend on the capability of GCMs to simulate future
climate (Tripathi et al., 2006). It is necessary to use
more than one GCM on a given climate change sce-
nario to test the robustness of the result projected by
the downscaling model, as any one GCM could gen-
erate efficient or inaccurate values of predictors. In
this study, CGCM2 and HadCM3 for the A2 emis-
sion scenarios were selected to project future change
in precipitation and the results predicted from the two
models are discordant in some parts of the Hanjiang
Basin for 2011–2040 and 2041–2070. From the results,
it can be concluded that the choice of GCM could
have a significant impact on the timing and extent
of adaptation responses. Wilby et al. (2006) com-
pared daily precipitation and potential evaporation
series arising from three GCMs (HadCM3, CGCM2
and CSIRO) under two emission scenarios (SRES A2
and B2). The study showed that scenarios downscaled
from CGCM2 suggested slight increases in deployable
abstraction, pointing to a more favorable resource situ-
ation. HadCM3 suggested little change in the interan-
nual variability of deployable yield, whereas CGCM2
indicated greater stability in the future. Although
it might be better to use more GCMs for the differ-
ent scenarios to predict precipitation in the Hanjiang
Basin, the main purpose of this study was to introduce
SSVM as a statistical downscaling tool and, therefore,
only two GCMs were chosen to project future climate.

6. Conclusion

Downscaling of GCM outputs to daily precipita-
tion was performed by using SSVM and ANN meth-
ods. It has been shown that SSVM is an effective sta-
tistical downscaling technique and useful for assessing
the impact of climate change in the Hanjiang Basin.
The proposed method is capable of producing satis-
factory results in terms of daily and monthly mean
precipitation in the testing periods. However, it was
found that the SSVM method is less skillful in repro-
ducing extreme daily precipitation and standard devi-
ation. Future changes in precipitation were projected
using CGCM2 and HadCM3 for the A2 emission sce-
nario and similar conclusions can be drawn from the
two models in most of the studied periods in different
parts of the Hanjiang Basin. The proposed method
could be used in future research to downscale other

predictands, such as temperature and evaporation, in
order to further assess the impacts of climate change.
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